2,269 research outputs found

    Convergence of numerical schemes for short wave long wave interaction equations

    Full text link
    We consider the numerical approximation of a system of partial differential equations involving a nonlinear Schr\"odinger equation coupled with a hyperbolic conservation law. This system arises in models for the interaction of short and long waves. Using the compensated compactness method, we prove convergence of approximate solutions generated by semi-discrete finite volume type methods towards the unique entropy solution of the Cauchy problem. Some numerical examples are presented.Comment: 31 pages, 7 figure

    Voltage controlling mechanisms in low resistivity silicon solar cells: A unified approach

    Get PDF
    An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices

    Properties and characterization of ALD grown dielectric oxides for MIS structures

    Full text link
    We report on an extensive structural and electrical characterization of under-gate dielectric oxide insulators Al2O3 and HfO2 grown by Atomic Layer Deposition (ALD). We elaborate the ALD growth window for these oxides, finding that the 40-100 nm thick layers of both oxides exhibit fine surface flatness and required amorphous structure. These layers constitute a base for further metallic gate evaporation to complete the Metal-Insulator-Semiconductor structure. Our best devices survive energizing up to ~3 MV/cm at 77 K with the leakage current staying below the state-of-the-art level of 1 nA. At these conditions the displaced charge corresponds to a change of the sheet carrier density of 3 \times 1013 cm-2, what promises an effective modulation of the micromagnetic properties in diluted ferromagnetic semiconductors.Comment: 8 pages, 5 figures, 14 reference

    Control of High-Temperature Static and Transient Thermomechanical Behavior of SiMo Ductile Iron by Al Alloying

    Get PDF
    Silicon and molybdenum (SiMo) ductile iron is commonly used for exhaust manifolds because these components experience thermal cycling in oxidizing environment, which requires resistance to fatigue during transient thermomechanical loads. Previous studies have demonstrated that alloying elements, such as Al, to SiMo ductile iron reduces the amount of surface degradation during static high-temperature exposure. However, deterioration of sphericity of the graphite nodules and a decrease in ductility could affect the tendency of cracking during thermal cycling. In this article, the effect of Al alloying on static and transient thermomechanical behavior of SiMo ductile iron was investigated to optimize the amount of Al alloying. A thermodynamic approach was used to confirm the effect of the Al alloying on the phase transformations in two SiMo cast irons, alloyed by 1.8% Al and 3% Al. These two alloys were cast in a laboratory along with the baseline SiMo ductile iron. Several experimental methods were used to evaluate the dimensional stability, physical properties, static oxidation, and failure resistance during constrained thermal cycling testing to compare their high-temperature capability. Experimental results verified that Al alloying increases the temperature range and decreases volume change during eutectoid transformation, which together with enhancement of oxidation protection improved the dimensional stability. Thermocycling tests showed that the number of cycles to failure depends on the amount of Al alloying and the applied high-temperature exposure during each cycle. SEM/EDX, high-resolution TEM and µCT analysis were used to verify the mechanism resulting from the Al alloying protection. It was shown that an optimal level of Al alloying for balancing oxidation and thermal cracking resistance depends on thermomechanical conditions of application
    corecore